One-pot direct conversion of 2,3-epoxy alcohols into enantiomerically pure 4-hydroxy-4,5-dihydroisoxazole 2-oxides

Emanuela Marotta, Laure Marie Micheloni, Noemi Scardovi, Paolo Righi*

Dipartimento di Chimica Organica "A. Mangini" – Università di Bologna Viale del Risorgimento, 4 – I-40136 Bologna (Italy)

Email: righi@ms.fci.unibo.it

Supporting Information

General: ¹H NMR spectra were recorded at 300.00 or 200.00 MHz at 20°C with either tetramethylsilane (δ 0.00), chloroform (δ 7.26), methanol (δ 3.30), dimethylsulfoxide (δ 2.49) or acetone (δ 2.20) as the internal standard. ¹³C NMR spectra were recorded at 75.46 or 50.3 MHz at 20°C with either chloroform (δ 77.7) methanol (δ 49.3), dimethylsulfoxide (δ 39.0) or acetone (δ 29.8) as the internal standard. Signal multiplicities were established by DEPT experiments. Melting points were determined through a *Büchi* instrument and are uncorrected. Specific optical rotations were determined at the sodium D line through a *Perkin Elmer 341* polarimeter. Flash chromatographic separations were performed over Merck Silica gel 60 (230-400 mesh), TLC analyses were performed over Merck precoated TLC plates (Silica gel 60 GF₂₅₄ 0.25 mm). Tetrahydrofuran was obtained anhydrous over sodium and benzophenone. Unless otherwise stated, other solvents and reagents were used as received.

General procedure for the one-pot consecutive transformation of 2,3-epoxy alcohols into 4-hydroxy-4,5-dihydroisoxazoles 2-oxides 1. To a stirred solution of 3-7 g of glycidol 3 in dichloromethane (1.1 ml/mmol of 3), TEMPO (0.1 eq) and BAIB (1.1 eq.) were added at room temperature in a round bottomed flask equipped with a CaCl₂ tube. The reaction was monitored by TLC and after 4-5h the starting material was consumed. At this point, imidazole (3.3 eq.) and ethyl nitroacetate (1.1 eq.) were added in sequence. The course of the reaction was monitored by TLC and was complete after 18-24 h at room temperature. For water soluble products 1a and 1b the reaction mixture was concentrated in vacuo and purified by flash column chromatography. For products 1c and 1d the reaction mixture was diluted with dichloromethane, washed with a 10% w/w solution of sodium carbonate and with brine; each aqueous layer was back-extracted with dichloromethane. The combined organic layers were dried over magnesium sulfate and concentrated in vacuo and the crude product was purified by flash column chromatography.

(4R,5S)- and (4S,5S)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-4,5-dihydroisoxazole 2-oxide (1a): flash chromatography (ethyl acetate/petroleum ether = 9/1) afforded 7.98 g of a mixture of the two dihydroisoxazoles (81% yield from 3.55 g of 3a). See below for characterization of single isomers.

(4R,5S)- and (4S,5S)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-5-methyl-4,5-dihydroisoxazole 2-Oxide (1b): flash chromatography (ethyl acetate/petroleum ether = 7/3) afforded 7.28 g of a mixture of the two dihydroisoxazoles (97% yield from 3.00 g of 3b). See below for characterization of single isomers.

(4*R*,5*S*)- and (4*S*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-[(*S*)-hydroxyphenylmethyl]-4,5-dihydroisoxazole 2-Oxide (1c): flash chromatography (ethyl acetate/petroleum ether = 1/1) afforded 6.52 g of 4,5-*cis*-1c and 2.79 g of 4,5-*trans*-1c (9.31 g combined, 71% yield from 7.00 g of 3c)

4,5-trans-1c: white solid; $[\alpha]_D^{24}$ -68.3 (c 0.912; CHCl₃); m.p. 118-120°C; IR (KBr): v 3395, 3334, 1721, 1625, 1236 cm⁻¹; ¹H NMR (CD₃OD): δ 1.29 (t, 3H, J = 7.1 Hz, CH₃ (Et)), 4.27 (q, 2H, J = 7.1 Hz, CH₂ (Et)), 4.61 (dd, 1H, J = 1.8, 4.4 Hz, C⁵H), 4.92 (d, 1H, J = 4.4 Hz, C¹H), 5.37 (d, 1H, J = 1.8 Hz, C⁴H); ¹³C NMR (CD₃OD): δ 14.73 (CH₃), 62.95 (CH₂), 73.39 (CH), 74.13 (CH), 88.93 (CH), 112.80 (C), 127.80 (CH), 129.30 (CH), 129.80 (CH), 140.50 (C), 160.60 (C).

4,5-cis-1c: white solid; $[\alpha]_D^{26}$ +10.6 (c 0.995, CHCl₃); m.p. 171-173°C (decomposition); IR (KBr): v 3515, 3446, 1713, 1599, 1242 cm⁻¹; ¹H NMR (CD₃OD): δ 1.33 (t, 3H, J = 7.1 Hz, CH₃ (Et)), 4.31 (q, 2H, J = 7.1 Hz, CH₂ (Et)), 6.61 (dd, 1H, J = 5.5, 9.2 Hz, C⁵H), 5.08 (d, 1H, J = 9.2 Hz, C¹H), 5.41(d, 1H, J = 5.5 Hz, C⁴H), 7.30-7.46 (m, 5H, arom.); ¹³C NMR (CD₃OD): δ 14.75 (CH₃), 63.00 (CH₂), 70.04 (CH), 73.55 (CH), 84.29 (CH), 114.62 (C), 128.46 (CH), 129.48 (CH), 129.64(CH), 142.42 (C), 160.65 (C).

(4R,5R)- and (4S,5R)-5-{(S)-[(2R)-1,4-Dioxaspiro[4.5]dec-2-yl]hydroxymethyl}-3-ethoxycarbonyl-4-hydroxy-4,5-dihydroisoxazole 2-Oxide (1d): flash chromatography (ethyl acetate/petroleum ether = 4/6) afforded 2.72 g of 4,5-cis-1d and 2.26 g of 4,5-trans-1d (4.98 g combined, 62% yield from 4.98 g of 3d).

4,5-trans-1d: white solid; $[\alpha]_D^{27}$ -68.9 (c 1.374; CH₃OH); m.p. 142-145°C; IR (KBr): v 3479, 3424, 1733, 1612, 1225 cm⁻¹; ¹H NMR (CD₃OD): δ 1.24 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.34, 1.52 (m, 10H; CH₂ (hexyl)), 3.53 (dd, 1H, J = 3.3, 6.6 Hz; C¹H), 3.76 (dd, 1H, J = 7.4, 8.0 Hz; C³H_a), 3.88 (dd, 1H, J = 6.6, 8.0 Hz; C³H_b), 4.15 (m, 1H; C²H), 4.23 (dq, 2H, J

= 2.5, 7.1 Hz, CH₂ (Et)), 4.36 (dd, 1H, J = 1.6, 6.6 Hz; C^5H), 5.49 (d, 1H, J = 1.6 Hz; C^4H); ^{13}C NMR (CD₃OD): δ 15.30 (CH₃), 25.66 (CH₂), 25.80 (CH₂), 27.07 (CH₂), 37.47 (CH₂), 36.72 (CH₂), 63.56 (CH₂), 67.04 (CH₂), 70.55 (CH), 75.80 (CH), 77.41 (CH), 86.81 (CH), 112.07 (C), 112.97 (C), 161.17 (C).

4,5-cis-1d: white solid; $[\alpha]_D^{25}$ -44.3 (c 1.453; CH₃OH); m.p. 120-122°C; IR (KBr): v 3490, 3456, 1701, 1598, 1244 cm⁻¹; ¹H NMR (CD₃OD): δ 1.23 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.42, 1.68 (m, 10H; CH₂ (hexyl)), 3.90 (dd, 1H, J = 7.1, 7.7 Hz; C³''H_a), 4.04 (dd, 1H, J = 3.0, 9.3 Hz; C¹'H), 4.05 (dd, 1H, J = 6.5, 7.7 Hz; C³''H_b), 4.18 (dt, 1H, J = 3.0, 7.1; C²''H), 4.32 (dq, 2H, J = 1.1, 7.1 Hz, CH₂ (Et)), 4.55 (dd, 1H, J = 5.5, 9.3 Hz; C⁵H), 5.36 (d, 1H, J = 5.5 Hz; C⁴H); ¹³C NMR (CD₃OD): δ 15.30 (CH₃), 25.70 (CH₂), 25.85 (CH₂), 27.13 (CH₂), 36.67 (CH₂), 37.53 (CH₂), 63.60 (CH₂), 66.75 (CH₂), 67.50 (CH), 74.29 (CH), 77.88 (CH), 81.98 (CH), 111.92 (C), 114.75 (C), 161.19 (C).

$$R^{2} \xrightarrow{\text{P}^{1}R^{3}Q - N} CO_{2}Et \xrightarrow{\text{DMF}} R^{2} \xrightarrow{\text{P}^{1}R^{3}Q - N} CO_{2}Et$$

$$R^{2} \xrightarrow{\text{DMF}} CO_{2}Et \xrightarrow{\text{DMF}} R^{2} \xrightarrow{\text{CO}_{2}Et} TDSO OTDS$$

General procedure of protection of the 4-Hydroxy-4,5-dihydroisoxazole 2-Oxides 1a-b: To a stirred solution of the dihydroisoxazole 1 in dimethylformammide (DMF) (about 1.5 ml/mmol), 2.5 eq of 4-dimethylaminopyridine (DMAP) and 2.3 eq of *tert*-butyldimethylsilylchloride (TDSCl) were added at room temperature in a round-bottomed flask equipped of a calcium chloride tube. After 24 h the reaction was quenched with water (10 ml/mmol of starting material) and the mixture was extracted with ethyl acetate (4×5 ml/mmol of starting material). The organic layer was dried over sodium sulfate and concentrated in vacuo. The crude product was purified by flash chromatography.

(4R,5S)- and (4S,5S)-4-tert-Butyldimethylsiloxy-5-tert-butyldimethylsiloxymethyl-3-ethoxycarbonyl-4,5-dihydro-isoxazole 2-Oxide (4a): 8.00 g (39.0 mmol) of starting material 1a afforded 14.63 g of the bisprotected product 4a (86% yield) and 0.75 g of *cis*-5-monoprotected dihydroisoxazole. Chromatographic conditions: diethyl ether/petroleum ether = 1/9, then 2/8, then 100% ethyl acetate.

$$\mathsf{TDSO} \underbrace{\overset{Q^{-N}}{\overset{Q^{-N}}{\mathsf{N}}}}_{\mathsf{CO}_2\mathsf{Et}} \mathsf{Co}_2\mathsf{Et}$$

4,5-trans-**4a**: white solid; $[\alpha]_D^{23}$ –49.2 (c 1.037, CHCl₃); m.p. 53-55°C; IR (KBr): v 1702, 1735, 1620, 1253 cm⁻¹; ¹H NMR (CDCl₃): δ 0.07 (s, 6H; CH₃Si), 0.14 (s, 3H; CH₃Si), 0.17 (s, 3H; CH₃Si), 0.87 (s, 9H; CH₃ (¹Bu)), 0.90 (s, 9H; CH₃ (¹Bu)), 1.35 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.70 (dd, 1H, J = 11.1, 5.5 Hz; C¹ H_a), 3.80 (dd, 1H, J = 11.1, 3.8 Hz; C¹ H_b), 4.26-4.42 (m, 3H; CH₂ (Et), C⁵H), 5.40 (d, 1H, J = 1.2 Hz; C⁴H); ¹³C NMR (CDCl₃): δ -4.57 (CH₃), -3.84 (CH₃), -3.75 (CH₃), 15.32 (CH₃), 18.97 (C), 19.16 (C), 26.60 (CH₃), 26.72 (CH₃), 62.63 (CH₂), 62.84 (CH₂), 76.92 (CH), 85.04 (CH), 112.00 (C), 159.78 (C).

4,5-cis-4a: white solid; $[\alpha]_D^{17}$ -33.4 (c 1.036, CHCl₃); m.p. 104-107°C; IR (KBr): v 1728, 1591, 1232 cm⁻¹; ¹H NMR (CDCl₃): δ 0.05 (s, 9H; CH₃Si), 0.15 (s, 3H; CH₃Si), 0.85-0.90 (s, 18H; CH₃ (¹Bu)), 1.35 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.92 (dd, 1H, J = 11.4, 6.8 Hz; C¹H_a), 4.10 (dd, 1H, J = 11.4, 5.1 Hz; C¹H_b), 4.24 (dq, 1H, J = 11.2, 7.2 Hz; CH_a (Et)), 4.28 (dq, 1H, J = 11.2, 7.2 Hz; CH_b (Et)), 4.54 (ddd, 1H, J = 6.8, 5.1, 5.2 Hz; C⁵H), 5.34 (d, 1H, J = 5.2 Hz; C⁴H); ¹³C NMR (CDCl₃): δ -4.93 (CH₃), -4.88 (CH₃), -4.81 (CH₃), -4.72 (CH₃), 14.72 (CH₃), 18.74 (C), 26.18 (CH₃), 26.31 (CH₃), 59.84 (CH₂), 62.34 (CH₂), 73.83 (CH), 82.64 (CH), 112.90 (C), 159.26 (C).

(4*R*,5*S*)- and (4*S*,5*S*)-4-tert-Butyldimethylsiloxy-5-tert-butyldimethylsiloxymethyl-3-etoxycarbonyl-5-methyl-4,5-dihydroisoxazole 2-Oxide (2b): 4.76 g (21.7 mmol) of starting material 1b afforded 8.08 g of the dihydroisoxazoles 4b (83% yield). Chromatographic conditions: diethyl ether/petroleum ether = 5/95, then 1/9.

TDSO
$$CO_2Et$$

4,5-trans-**4b**: white solid; $[\alpha]_D^{20}$ -40.3 (c 0.417, CHCl₃); m.p. 42-44°C; IR (KBr): v 1691, 1611, 1268 cm⁻¹; ¹H NMR (CDCl₃): δ 0.06 (s, 3H; CH₃Si), 0.07 (s, 3H; CH₃Si), 0.13 (s, 3H; CH₃Si), 0.15 (s, 3H; CH₃Si), 0.87 (s, 9H; CH₃ (¹Bu)), 0.89 (s, 9H; CH₃ (¹Bu)), 1.35 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.37 (s, 3H; CH₃C⁵), 3.57 (d, 1H, J = 10.6 Hz; Cll₄ (a), 3.63 (d, 1H, J = 10.6 Hz; Cll₄ (b), 4.23 (dq, 1H, J = 10.9, 7.1 Hz; CH₄ (Et)), 4.42 (dq, 1H, J = 10.9, 7.1 Hz; CH₆ (Et)), 5.27 (s, 1H, Cll₄ (CDCl₃): δ -5.19 (CH₃), -4.33 (CH₃), -4.15 (CH₃), 14.77 (CH₃), 15.90 (CH₃), 18.53 (C), 18.74 (C), 25.23 (CH₃), 62.09 (CH₂), 66.89 (CH₂), 76.39 (CH), 86.51 (C), 112.90 (C), 159.30 (C).

$$\mathsf{TDSO} \underbrace{\begin{smallmatrix} \mathsf{O} \\ \mathsf{O} \\ \mathsf{N} \end{smallmatrix}}^{\mathsf{P}} \underbrace{\begin{smallmatrix} \mathsf{O} \\ \mathsf{CO}_2\mathsf{Et} \end{smallmatrix}}_{\mathsf{D}}$$

4,5-cis-**4b**: white solid; $[\alpha]_D^{26}$ +2.1 (c 0.858, CHCl₃); m.p. 82-83°C; IR (KBr): v 1729, 1599, 1240 cm⁻¹; ¹H NMR (CDCl₃): δ 0.05 (s, 3H; CH₃Si), 0.06 (s, 3H; CH₃Si), 0.07 (s, 3H; CH₃Si), 0.12 (s, 3H; CH₃Si), 0.85 (s, 9H; CH₃ (¹Bu)), 0.88 (s, 9H; CH₃ (¹Bu)), 1.34 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.38 (s, 3H; CH₃C⁵), 3.78 (d, 1H, J = 11.1 Hz; Cll₄ (al), 3.92 (d, 1H, J = 11.1 Hz; Cll₄ (al), 4.24 (dq, 1H, J = 3.9, 7.1 Hz; CH₄ (Et)), 4.39 (dq, 1H, J = 3.9, 7.1 Hz; CH₆ (Et)), 5.00 (s, 1H, Cll₄ (CDCl₃): δ -5.49 (CH₃), -5.12 (CH₃), -4.68 (CH₃), 14.20 (CH₃), 19.20 (C), 19.26 (C), 25.67 (CH₃), 61.73 (CH₂), 63.57 (CH₂), 78.70 (CH), 86.30 (C), 112.10 (C), 159.00 (C).

General procedure of deoxygenation of the dihydroisoxazoles 4a-b: The starting material was dissolved in 4 ml/mmol of trimethyl phosphite in a flask equipped with a condenser and a termometer. The mixture was stirred at 100° C for 5 h, then diethyl ether was added (25 ml/mmol of starting material) and the solution was washed with HCl 1N (3×10 ml/mmol of starting material), water (10 ml/mmol) and brine (5 ml/mmol). The organic layer was dried over sodium sulfate and concentrated in vacuo to give a crude product which could be used without further purification.

(4R,5S)-4-tert-Butyldimethylsiloxy-5-tert-butyldimethylsiloxymethyl-3-ethoxycarbonyl-4,5-dihydroisoxazole

(4,5-trans-5a): 0.30 g (0.7 mmol) of the starting material trans-4a afforded 0.29 g of the product trans-5a (quantitative yield): colourless oil; $[\alpha]_D^{26}$ –72.1 (c 0.957, CHCl₃); ¹H NMR (CDCl₃): δ 0.02 (s, 3H; CH₃Si), 0.03 (s, 3H; CH₃Si), 0.11 (s, 3H; CH₃Si), 0.13 (s, 3H; CH₃Si), 0.83 (s, 9H; CH₃ ([†]Bu)), 0.84 (s, 9H; CH₃ ([†]Bu)), 1.33 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.53 (dd, 1H, J = 11.0, 6.2 Hz; Cll₄), 3.76 (dd, 1H, J = 11.0, 4.0 Hz; Cll₄), 4.32 (q, 1H, J = 7.1 Hz; CH_a (Et)), 4.33 (q, 1H, J = 7.1 Hz; CH_b (Et)), 4.46 (ddd, 1H, J = 6.2, 4.0, 2.6 Hz; Cll₅H), 5.25 (d, 1H, J = 2.6 Hz; Cll₄H); ¹³C NMR (CDCl₃): δ –5.49 (CH₃), -4.93 (CH₃), -4.82 (CH₃), 14.19 (CH₃), 17.97 (C), 18.22 (C), 25.70 (CH₃), 25.79 (CH₃), 61.44 (CH₂), 61.85 (CH₂), 77.36 (CH), 90.83 (CH), 152.71 (C), 160.21 (C).

 $(4S,\!5S)-4-\textit{tert}-Butyl dimethyl siloxy-5-\textit{tert}-butyl dimethyl siloxymethyl-3-ethoxycarbonyl-4,\!5-dihydro is oxazole$

(4,5-cis-5a): 1.00 g (2.3 mmol) of the starting material cis-4a afforded 0.96 g of the product cis-5a (quantitative yield): colourless oil; $[\alpha]_D^{25}$ –59.5 (c 0.964, CHCl₃); ¹H NMR (CDCl₃): δ 0.10-0.14 (s, 9H; CH₃Si), 0.15 (s, 3H; CH₃Si), 0.85 (s, 9H; CH₃ (^tBu)), 0.90 (s, 9H; CH₃ (^tBu)), 1.40 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.95 (dd, 1H, J = 11.3, 6.9 Hz; Cl¹H₃), 4.06 (dd,

1H, J = 11.3, 5.2 Hz; $C^{1'}H_b$), 4.30-4.35 (m, 1H; C^5H), 4.31 (dq, 1H, J = 10.8, 7.1 Hz; CH_a (Et)), 4.41 (dq, 1H, J = 10.8, 7.1 Hz; CH_b (Et)), 5.21 (d, 1H, J = 6.7 Hz; C^4H); C^4H 13 NMR (CDCl₃): $\delta - 4.92$ (CH₃), -4.30 (CH₃), -4.25 (CH₃), -4.13 (CH₃), 15.19 (CH₃), 19.24 (C), 19.40 (C), 26.69 (CH₃), 26.92 (CH₃), 60.36 (CH₂), 63.05 (CH₂), 75.17 (CH), 89.05 (CH), 154.87 (C), 161.41 (C).

TDSO
$$CO_2Et$$

(4*R*,5*S*)-4-tert-Butyldimethylsiloxy-5-tert-butyldimethylsiloxymethyl-3-ethoxycarbonyl-5-methyl-4,5-dihydro-isoxazole (trans-5b): 0.32 g (0.7 mmol) of the starting material trans-4b afforded 0.29 g of the product trans-5b (quantitative yield): colourless oil; $[α]_D^{28}$ –48.1 (*c* 1.247, CHCl₃); ¹H NMR (CDCl₃): δ 0.02 (s, 3H; CH₃Si), 0.03 (s, 3H; CH₃Si), 0.12 (s, 3H; CH₃Si), 0.13 (s, 3H; CH₃Si), 0.85 (s, 18H; CH₃ (¹Bu)), 1.34 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.35 (s, 3H; CH₃C⁵), 3.34 (d, 1H, J = 10.2 Hz; Cl¹H_a), 3.52 (d, 1H, J = 10.2 Hz; Cl¹H_b), 4.27 (dq, 1H, J = 10.7, 7.1 Hz; CH_a (Et)), 4.37 (dq, 1H, J = 10.7, 7.1 Hz; CH_b (Et)), 5.10 (s,1H, C⁴H); ¹³C NMR (CDCl₃): δ –5.60 (CH₃), –5.50 (CH₃), –5.02 (CH₃), –4.66 (CH₃), 14.20 (CH₃), 15.34 (CH₃), 18.20 (C), 25.69 (CH₃), 25.77 (CH₃), 61.75 (CH₂), 65.86 (CH₂), 76.84 (CH), 92.39 (C), 153.10 (C), 160.70 (C).

(4S,5S)-4-tert-Butyldimethylsiloxy-5-tert-butyldimethylsiloxymethyl-3-ethoxycarbonyl-5-methyl-4,5-dihydro-

isoxazole (4,5-*cis*-5b): 1.43 g (3.2 mmol) of the starting material *cis*-4b afforded 1.35 g of product *cis*-5b (95% yield) after flash chromatography (diethyl ether/petroleum ether = 1/9): white solid; $[α]_D^{27}$ -8.4 (*c* 0.834, CHCl₃); m.p. 58-60°C; IR (KBr): v 1721, 1579 cm⁻¹; ¹H NMR (CDCl₃): δ 0.08 (s, 3H; CH₃Si), 0.10 (s, 3H; CH₃Si), 0.12 (s, 3H; CH₃Si), 0.14 (s, 3H; CH₃Si), 0.86 (s, 9H; CH₃ (¹Bu)), 0.92 (s, 9H; CH₃ (¹Bu)), 1.28 (s, 3H; CH₃C⁵), 1.38 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.83 (d, 1H, J = 11.0 Hz; C¹H_a), 3.88 (d, 1H, J = 11.0 Hz; C¹H_b), 4.30 (dq, 1H, J = 10.7, 7.1 Hz; CH_a (Et)), 4.40 (dq, 1H, J = 10.7, 7.1 Hz; CH_b (Et)), 4.78 (s, 1H, C⁴H); ¹³C NMR (CDCl₃): δ -4.29 (CH₃), -3.88 (CH₃), 15.20 (CH₃), 19.20 (C), 19.45 (C), 20.48 (CH₃), 26.70 (CH₃), 26.98 (CH₃), 62.94 (CH₂), 64.22 (CH₂), 81.06 (CH), 92.96 (C), 153.90 (C), 161.76 (C).

General procedure of desilylation: To a stirred solution of the dihydroisoxazole in anhydrous tetrahydrofuran (THF) (3 ml/mmol), 2.8 eq of tetrabutylammoniumfluoride (1M in THF) were added at room temperature in a round-bottomed flask equipped of a calcium chloride tube. After 5 minutes the TLC analisys (ethyl acetate) revealed that the starting material was consumed, ethanol was added (6 ml/mmol), the mixture was stirred for 1 h and concentrated in vacuo. The crude product was purified by flash chromatography.

HO
$$OH$$
 CO_2Et

(4*R*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-4,5-dihydroisoxazole 2-Oxide (4,5-*trans*-1a): 0.350 g (0.71 mmol) of the starting material *trans*-4a afforded 0.115 g (78% yield) of the deprotected dihydroisoxazole *trans*-1a; chromatographic conditions: ethyl acetate/petroleum ether = 1/1 then 8/2: colourless oil; $[α]_D^{24}$ –95.8° (*c* 0.711, EtOH); ¹H NMR ((CD₃)₂CO): δ 1.29 (t, 3H, J = 7.0 Hz; CH₃ (Et)), 3.80 (d, 2H, J = 4.4 Hz; C¹H₂), 4.27 (q, 1H, J = 7.0 Hz; CH_a (Et)), 4.28 (q, 1H, J = 7.0 Hz; CH_b (Et)), 4.53 (dd, 1H, J = 4.4, 2.2 Hz; C⁵H), 5.42 (d, 1H, J = 2.2 Hz; C⁴H); ¹³C NMR ((CD₃)₂CO): δ 14.82 (CH₃), 62.22 (CH₂), 75.34 (CH), 85.82 (CH), 112.19 (C), 159.79 (C).

(4*S*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-4,5-dihydroisoxazole 2-Oxide (4,5-*cis*-1a): 0.140 g (0.28 mmol) of the starting material *cis*-4a afforded 0.053 g (91% yield) of the deprotected dihydroisoxazole *cis*-1a; chromatographic conditions: ethyl acetate: clourless oil; $[α]_D^{25}$ –42.6 (*c* 0.393, EtOH); ¹H NMR ((CD₃)₂CO): δ 1.29 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.98 (dd, 1H, J = 12.3, 6.6 Hz; C¹'H_a), 4.07 (dd, 1H, J = 12.3, 4.4 Hz; C¹'H_b), 4.27 (q, 1H, J = 7.1 Hz; CH_a (Et)), 4.28 (q, 1H, J = 7.1 Hz; CH_b (Et)), 4.78 (ddd, 1H, J = 6.6, 4.4, 6.1 Hz; C⁵H), 5.50 (d, 1H, J = 6.1 Hz; C⁴H); ¹³C NMR ((CD₃)₂CO): δ 14.41 (CH₃), 59.33 (CH₂), 61.70 (CH₂), 73.39 (CH), 82.17 (CH), 112.71 (C), 159.28 (C).

$$\mathsf{HO} \underbrace{\mathsf{O-N}}^{\mathsf{O-N}} \mathsf{CO_2Et}$$

(4*R*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-5-methyl-4,5-dihydroisoxazole 2-Oxide (4,5-*trans*-1b): 0.340 g (0.70 mmol) of the starting material *trans*-4b afforded 0.130 g (88% yield) of the deprotected dihydroisoxazole *trans*-1b; chromatographic conditions: ethyl acetate/petroleum ether = 8/2: white solid; $[α]_D^{27}$ -56.6° (*c* 1.085, EtOH); IR (KBr): v 3433, 3333, 1728, 1616, 1249 cm⁻¹; ¹H NMR ((CD₃)₂CO): δ 1.29 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.41 (s, 3H; CH₃C⁵), 3.62 (d, 1H, J = 11.8 Hz; Cl'H_a), 3.67 (d, 1H, J = 11.8 Hz; Cl'H_b), 4.26 (q, 2H, J = 7.1 Hz; CH₂ (Et)), 5.27 (s, 1H, C⁴H); ¹³C NMR ((CD₃)₂CO): δ 15.45 (CH₃), 15.96 (CH₃), 62.67 (CH₂), 67.38 (CH₂), 76.26 (CH), 87.92 (C), 113.88 (C), 160.59 (C).

(4*S*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-5-methyl-4,5-dihydroisoxazole 2-Oxide (4,5-cis-1b): 0.19 g (0.4 mmol) of the starting material *cis*-4b afforded 0.07 g (85% yield) of the deprotected dihydroisoxazole *cis*-1b; chromatographic conditions: ethyl acetate: colourless oil; $[α]_D^{25}$ +18.5 (*c* 0.546, CHCl₃); ¹H NMR (CD₃OD): δ 1.33 (t, 3H, J = 7.1 Hz, CH₃ (Et)), 1.43 (s, 3H, CH₃), 3.81 (d, 1H, J = 12.1 Hz, Cl H_a), 3.88 81 (d, 1H, J = 12.1 Hz, Cl H_b), 0.4.31 (q, 2H, J = 7.1 Hz, CH₂ (Et)), 5.06 (s, 1H, Cl H); ¹³C NMR (CD₃OD): δ 14.71 (CH₃), 20.23 (CH₃), 62.94 (CH₂), 63.59 (CH₂), 79.04 (CH), 87.03 (C), 113.53 (C), 160.82 (C).

(4*R*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-4,5-dihydroisoxazole (4,5-*trans*-9a): 0.30 g (0.7 mmol) of the starting material *trans*-5a afforded 0.10 g (83% yield) of the free dihydroisoxazole 4,5-*trans*-9a; chromatographic conditions: ethyl acetate/petroleum ether = 8/2: colourless oil; $[\alpha]_D^{22}$ –112.3 (*c* 0.768, EtOH); ¹H NMR ((CD₃)₂CO): δ 1.32 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.67 (dd, 1H, J = 12.1, 4.9 Hz; Cl¹ H_a), 3.74 (dd, 1H, J = 12.1, 4.9 Hz; Cl¹ H_b), 4.31 (q, 1H, J = 7.1 Hz; CH_a (Et)), 4.32 (q, 1H, J = 7.1 Hz; CH_b (Et)), 4.54 (dt, 1H, J = 4.9, 3.6 Hz; C⁵H), 5.31 (d, 1H, J = 3.6 Hz; C⁴H); ¹³C NMR ((CD₃)₂CO): δ 15.35 (CH₃), 62.64 (CH₂), 63.08 (CH₂), 77.93 (CH), 93.06 (CH), 155.24 (C), 161.98 (C).

(4*S*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-4,5-dihydroisoxazole (4,5-*cis*-9a): 0.25 g (0.6 mmol) of the starting material *cis*-5a afforded 0.07 g (70% yield) of the dihydroisoxazole *cis*-9a; chromatographic conditions: ethyl acetate/petroleum ether = 8/2: semisolid; $[α]_D^{28}$ –107.2 (*c* 0.622, EtOH); IR (KBr): ν 3388, 1729, 1587 cm⁻¹; ¹H NMR ((CD₃)₂CO): δ 1.82 (t, 3H, J = 7.0 Hz; CH₃ (Et)), 3.89-4.19 (m, 3H; C¹ H₂, C¹ OH), 4.31 (q, 2H, J = 7.0 Hz; CH₂ (Et)), 4.53 (m, 1H; C⁵H), 5.17 (d, 1H, J = 6.0 Hz; C⁴OH), 5.38 (dd, 1H, J = 6.0 Hz; C⁴H); ¹³C NMR ((CD₃)₂CO): δ 15.37 (CH₃), 60.11 (CH₂), 63.03 (CH₂), 75.72 (CH), 88.79 (CH), 155.95 (C), 161.95 (C).

(4*R*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-5-methyl-4,5-dihydroisoxazole (4,5-*trans*-9b): 0.26 g (0.5 mmol) of the starting material *trans*-5b afforded 0.10 g (92% yield) of the dihydroisoxazole *trans*-9b chromatographic conditions: ethyl acetate/petroleum ether = 8/2: colourless oil; $[\alpha]_D^{28}$ –70.4 (*c* 1.034, EtOH); ¹H NMR ((CD₃)₂CO): δ 1.31 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 1.38 (s, 3H; CH₃C⁵), 3.43 (d, 1H, J = 11.4 Hz; C¹'H_a), 3.55 (d, 1H, J = 11.4 Hz; C¹'H_b), 4.29 (q, 1H, J = 7.1 Hz; CH_a (Et)), 4.30 (q, 1H, J = 7.1 Hz; CH_b (Et)), 5.13 (s, 1H; C⁴H); ¹³C NMR ((CD₃)₂CO): δ 15.40 (CH₃), 15.79 (CH₃), 62.94 (CH₂), 67.12 (CH₂), 77.50 (CH), 94.09 (C), 155.35 (C), 162.26 (C).

(4*S*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-hydroxymethyl-5-methyl-4,5-dihydroisoxazole (4,5-*cis*-9b): 0.40 g (0.8 mmol) of the starting material *cis*-5b afforded 0.10 g (60% yield) of the dihydroisoxazole *cis*-9b; chromatographic conditions: ethyl acetate/diethyl ether = 1/9: colourless oil: $[\alpha]_D^{25}$ +4.1 (*c* 0.888, CHCl₃); ¹H NMR (CDCl₃): δ 1.31 (s, 3H; CH₃C⁵), 1.33 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.38 (bs, 1H; Cl OH), 3.90 (bs, 2H; Cl H₂), 4.32 (q, 2H, J = 7.1 Hz; CH₂ (Et)), 4.51 (d, 1H, J = 4.7 Hz; Cl OH), 5.00 (d, 1H, J = 4.7 Hz, Cl OH); ¹³C NMR (CDCl₃): δ 13.86 (CH₃), 20.58 (CH₃), 62.12 (CH₂), 63.77 (CH₂), 80.60 (CH), 90.56 (C), 152.56 (C), 160.46 (C).

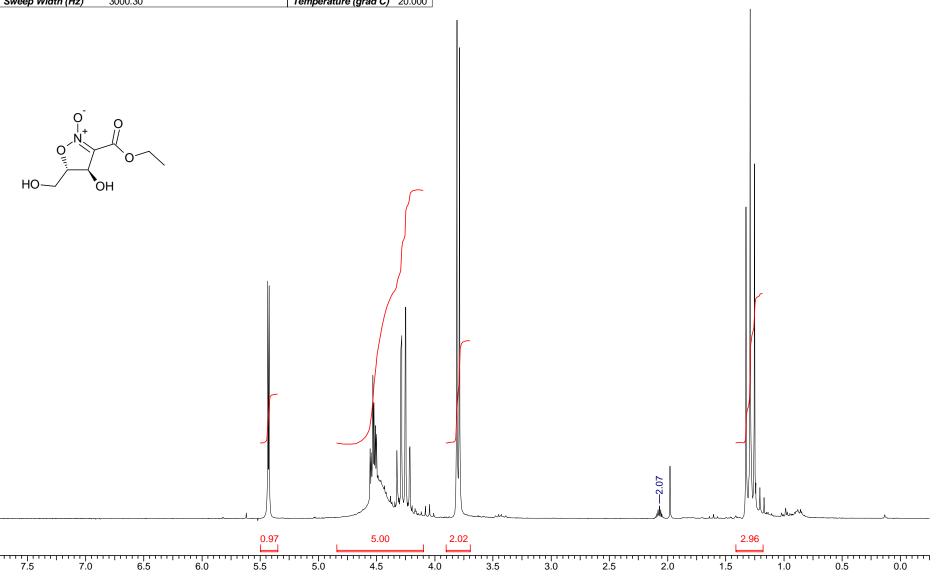
(4*R*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-[(*S*)-hydroxyphenylmethyl]-4,5-dihydroisoxazole (4,5-*trans*-9c): 0.17 g (0.3 mmol) of the starting material *trans*-5c afforded 0.06 g (76% yield) of the dihydroisoxazole *trans*-9c; chromatographic conditions: diethyl ether/petroleum ether = 1/1: semisolid; [α]_D²⁴ –112.9 (*c* 0.328, CHCl₃); IR (NaCl): v 3419, 1717, 1590 cm⁻¹; ¹H NMR (DMSO-d₆): δ 0.84 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 3.84 (q, 2H, J = 7.1 Hz; CH₂ (Et)), 4.10 (dd, 1H, J = 5.2, 3.3 Hz; C⁵H), 4.27 (bd, 1H; C⁴H), 4.74 (bs, 1H; C¹H), 5.45 (bs, 1H; C¹OH), 5.70 (bd, 1H, C⁴OH), 6.86-7.25 (m, 5H; arom.); ¹³C NMR (DMSO-d₆): δ 13.96 (CH₃), 61.34 (CH₂), 70.76 (CH), 74.26 (CH), 93.95 (CH), 126.58 (CH), 127.38 (CH), 128.14 (CH), 140.74 (C), 153.38 (C), 159.86 (C).

Q-N
HO
$$\bar{\ddot{O}}H$$
 CO₂Et

(4*S*,5*S*)-3-Ethoxycarbonyl-4-hydroxy-5-[(*S*)-hydroxyphenylmethyl]-4,5-dihydroisoxazole (4,5-*cis*-9c): 0.08 g (0.15 mmol) of the starting material *cis*-5c afforded 0.05 g (quant. yield) of the dihydroisoxazole *cis*-9c; chromatographic conditions: ethyl acetate/petroleum ether = 1/1: white solid; $[\alpha]_D^{25}$ –44.5° (*c* 1.56, CHCl₃); m.p. 151-153°C; IR (KBr): v 3521, 3431, 1727, 1589; ¹H NMR (DMSO-d₆): δ 1.30 (t, 3H, J = 7.1 Hz; CH₃ (Et)), 4.28 (q, 2H, J = 7.1 Hz; CH₂ (Et)), 4.29 (dd, 1H, J = 9.4, 6.8 Hz; C⁵H), 4.90 (dd, 1H, J = 9.4, 4.7 Hz; C¹'H), 5.14 (dd, 1H, J = 7.5, 6.8 Hz; C⁴H), 5.68 (d, 1H, J = 4.7 Hz; C¹'OH), 6.18 (d, 1H, J = 7.5 Hz; C⁴OH), 7.20-7.50 (m, 5H; arom.); ¹³C NMR (DMSO-d₆): δ 13.97 (CH₃), 61.30 (CH₂), 67.68 (CH), 72.54 (CH), 88.68 (CH), 127.26 (CH), 127.49 (CH), 127.96 (CH), 142.44 (C), 155.23 (C), 159.89 (C).

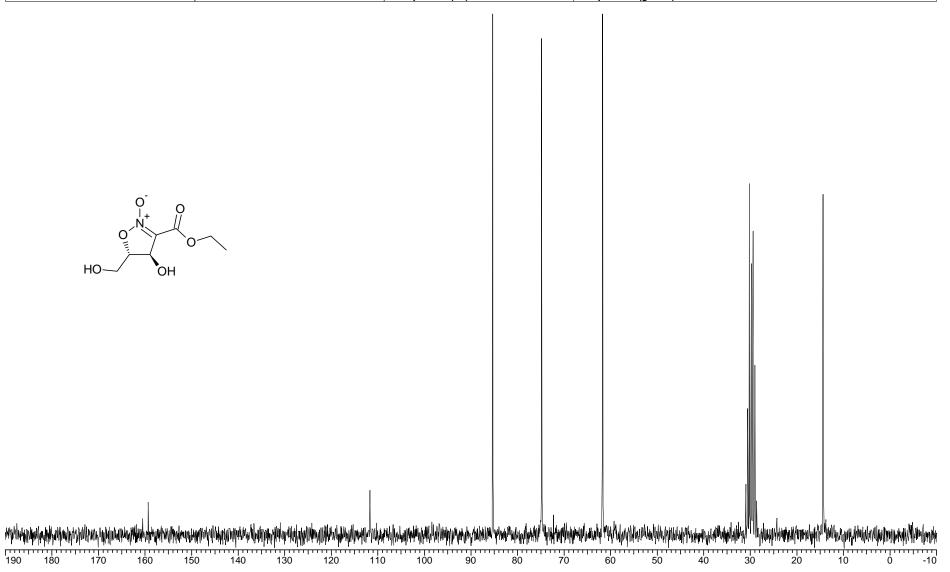
(4S,5S)-4-tert-Butyldimethyldimethylsilyloxy-3,5-bis(tert-butyldimethylsilyloxymethyl)-5-methyl-4,5-dihydro-isoxazole (6). Sodium borohydride (660 mg, 17.4 mmol) was added to a flame-dried three-neck flask containing 4,5-cis-5b (5.00 g, 11.6 mmol) and EtOH (24 ml) at -10° C. The reaction mixture was allowed to reach room temperature and was stirred until TLC showed that there was no more starting material (ca.16 h). Excess borohydride was destroyed with 1 N hydrochloric acid and the mixture was diluted with water (50 ml). The aqueous layer was extracted with EtOAc (5 x 25

ml) and the combined organic layers were washed with brine (15 ml) and dried over magnesium sulphate. The solvent was removed by rotary evaporation to afford 4.30 g (95 % yield) of a colourless liquid which crystallized after ca.1 h and was used without further purification. 1 H NMR (CDCl₃): δ 0.08 (s, 6H), 0.12 (s, 3H), 0.16 (s, 3H), 0.90 (s, 18H), 1.29 (s, 3H), 3.05 (bs, 1H), 3.72 (d, J = 11.0 Hz, 1H), 3.78 (d, J = 11.0 Hz, 1H), 4.28 (d, J = 14.0 Hz, 1H), 4.46 (d, J = 14.0 Hz, 1H), 4.80 (s, 1H); 13 C NMR (CDCl₃): δ -4.92; -4.86; -4.55; -4.35 (CH₃Si), 18.45; 18.91 (C), 20.60 (CH₃), 26.06; 26.43 (CH₃) 56.40 (CH₂), 64.18 (CH₂), 82.01 (CH), 88.33 (C), 159.81 (C); mp 44-46°C; $[\alpha]_D^{22} + 28.2$ (c 1.02; CH₃Cl)


To a stirred solution of crude alcohol (4.3 g, 11.0 mmol) in DMF (20 ml) DMAP (4.3 mg, 35.2 mmol), and tert-butyldimethylsilyl chloride (2.58 g, 17.1 mmol) were added. The mixture was kept stirring at room temperature for 22 h, and then it was partitioned between water and ethyl acetate. The aqueous layer was extracted 3 times with EtOAc. The crude product was purified by column chromatography (petroleum ether- Et₂O, 9:1) to give **6** (4.90 g, 86% yield) as a white solid. mp 41-43°C; $[\alpha]_D^{22}$ -6.30 (c 1.007; CH₃Cl); ¹H NMR (CDCl₃): δ 0.07-0.16 (m, 18H), 0.90 (s, 27 H), 1.30 (s, 3H), 3.80(s, 2H), 4.35(d, J =12.7 Hz,1H), 4.40(d, J =12.7 Hz,1H), 4.72 (s, 1H);); ¹³C NMR (CDCl₃): δ -4.35; -4.31; -4.27; -4.13; -4.06; -3.81 (CH₃Si), 19.10; 19.50 (C), 21.23 (CH₃); 26.70; 26.79; 27.04 (CH₃), 57.30 (CH₂),64.70(CH₂), 82.10 (CH), 88.45 (C), 160.00 (C).

(2R,3S,4R)-2-Acetamido-4-methyl-1,3,5-triacetoxy-pentan-4-ol (8): 1.20 g (2.0 mmol) of 6 was dissolved in 2.5 ml of anhydrous diethyl ether, 5.3 ml (5.3 mmol) of a 1M solution of lithium aliuminum hydride in diethyl ether were added dropwise at -10° C. After 4h at 0° C the TLC analysis (petroleum ether/diethyl ether = 9/1) revealed that the starting material was consumed. 5.0 ml of HCl 6N were then added dropwise at -5° C and the mixture was extracted several times with ethyl acetate, the organic layer was washed with 30 ml of brine, dried with magnesium sulfate and concentrated *in vacuo*. The residual was dissolved in 4.0 ml of a 3:1 mixture of methanol/tetrahydrofuran, 2 ml of HCl 6N were added and the mixture was rifluxed for 3h. Concentration under reduced pressure afforded 560 mg (82% yield) of a brown oil constituted by the wished product which was characterized through the subsequent derivatization.

The crude product of the previous reaction was dissolved in 3 ml of dry pyridine under nitrogen. 0.92 ml (9.8 mmol) of acetic anhydride were added dropwise at room temperature. After 20 h the mixture was concentrated *in vacuo*, dissolved in 5 ml of chloroform and washed with 3 ml of a saturated solution of sodium carbonate, with 5 ml of a saturated solution of copper sulfate and with 10 ml of brine. Each aqueous layer was back-extracted with chloroform, the reunited organic layer was dried with magnesium sulfate and concentrated *in vacuo* to give 430 mg (78% yield, 64% overall) of a yellow oil constituted by the mixture (d.e. > 9:1 by 1 H NMR) of the two tetraacetilated isomers. [α] $^{18}_{D}$ –25.2 (c 1.622, CHCl₃). 1 H NMR (CDCl₃): δ 1.30 (s, 3H, CH₃), 1.94 (s, 3H, CH₃ (Ac)), 1.99 (s, 3H, CH₃ (Ac)), 2.01 (s, 3H, CH₃ (Ac)), 2.07 (s, 3H, CH₃ (Ac)), 3.50 (bs, 1H, OH), 3.92 (d, 1H, J = 11.4 Hz, C 5 H_a), 4.04 (dd, 1H, J = 4.6, 11.3 Hz, C 1 H_a), 4.08 (d, 1H, J = 11.4 Hz, C 5 H_b), 4.10 (dd, 1H, J = 6.4, 11.3 Hz, C 1 H_b), 4.65 (m, 1H, C 2 H), 5.04 (d, 1H, J = 2.2, C 3 H), 6.40 (d, 1H, J = 8.4 Hz, NH); 13 C NMR (CDCl₃): δ 21.13 (CH₃), 21.18 (CH₃), 21.26 (CH₃), 22.32 (CH₃), 23.53 (CH₃), 47.75 (CH), 64.27 (CH₂), 68.37 (CH₂), 73.30 (C), 73.44 (CH), 170.60 (C), 171.29 (C), 171.30 (C).


4,5-*trans-*1a

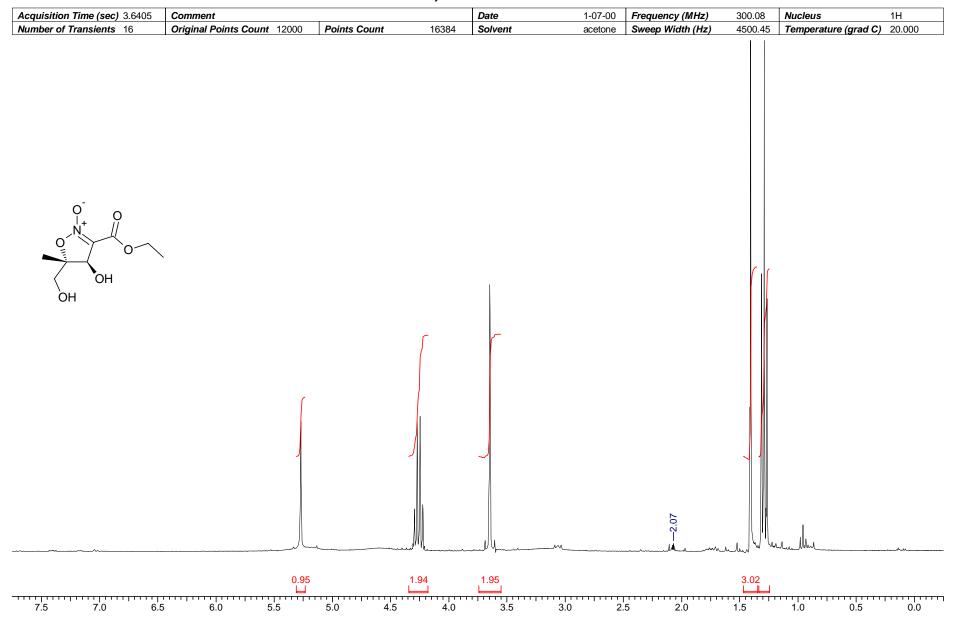
Acquisition Time (sec	2.7304	Comment		Date	1-08-00			Frequency (MHz) 199.98
Nucleus	1H	Number of Transients 16	Original Points Count 8000	Points Count	8192	Solvent	acetone	
Sweep Width (Hz)	3000.30	1	Temperature (grad C) 20.000					


4,5-*trans*-1a

Acquisition Time (se	ec) 0.5464	Comment				
Date	1-08-00	Frequency (MHz)	50.29	Nucleus	13C	Original Points Count 8000
Points Count	8192	Solvent	acetone	Sweep Width (Hz)	14992.51	Temperature (grad C) 29.000

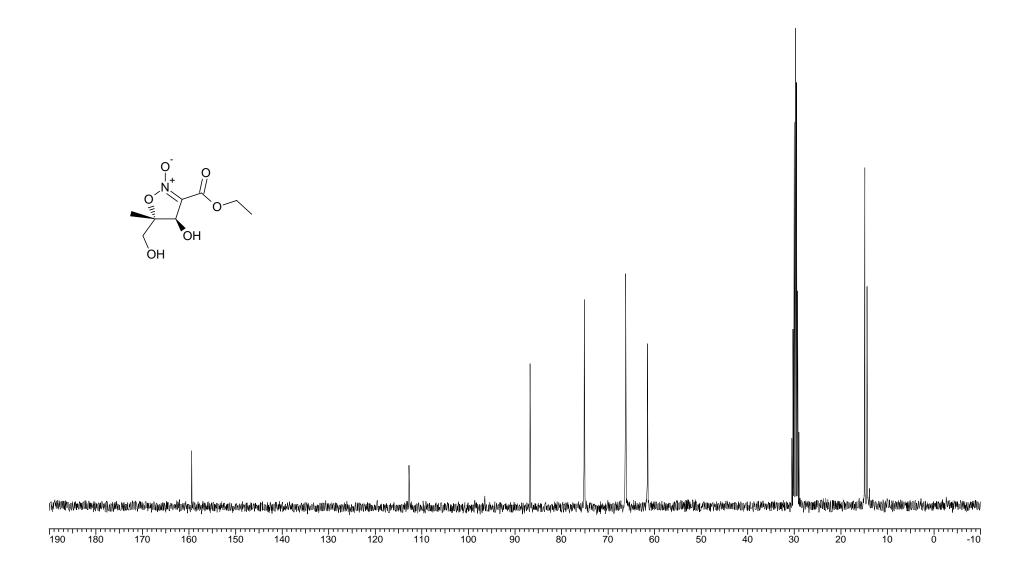
4,5-*cis-*1a

Acquisition Time (sec	3.6405	Comment	LM85B		Date	1-15-00)
Frequency (MHz)	300.08	Nucleus	1H	Number of Transients 16	Original Points Count	12000	Points Count 16384
Solvent	acetone	Sweep Width (Hz)	4500.45	5	Temperature (grad C)	20.000	

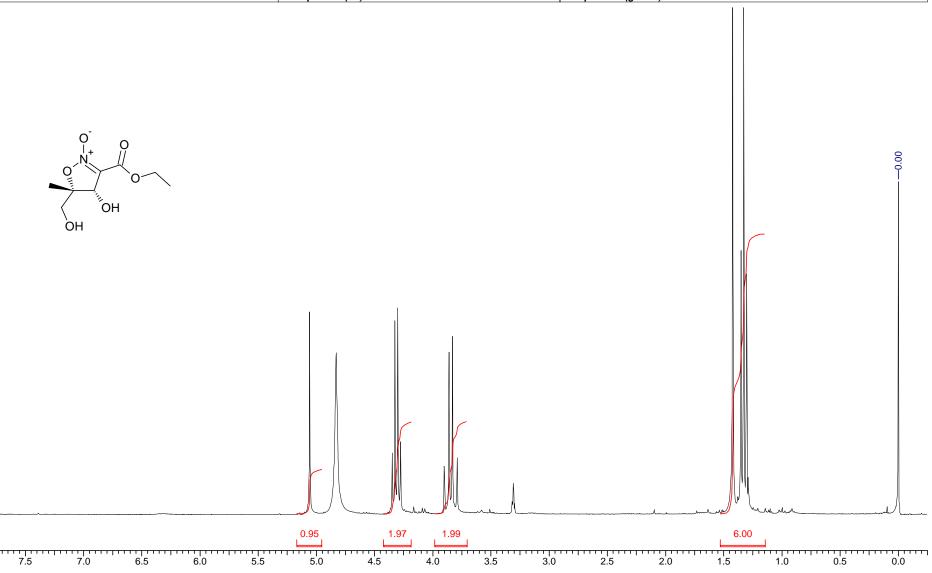


4,5-cis-1a

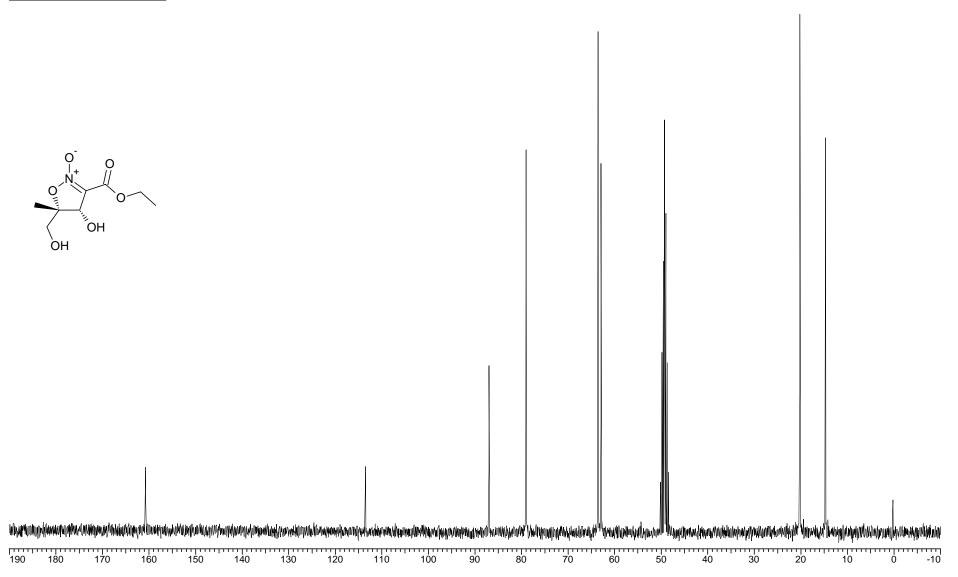
				4,5	- <i>cis-</i> 1a					
Acquisition Time (sec) 0.8192	Comment				Date	1-15-00	Frequency (MHz)	75.46	Nucleus	13C
riginal Points Count 12000	Points Count	16384	Solvent	acetone	Sweep Width (Hz)	20000.00			Temperature (grad	C) 20.000
0 0										
HO OH										


190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

4,5-*trans-*1b


4,5-*trans-*1b

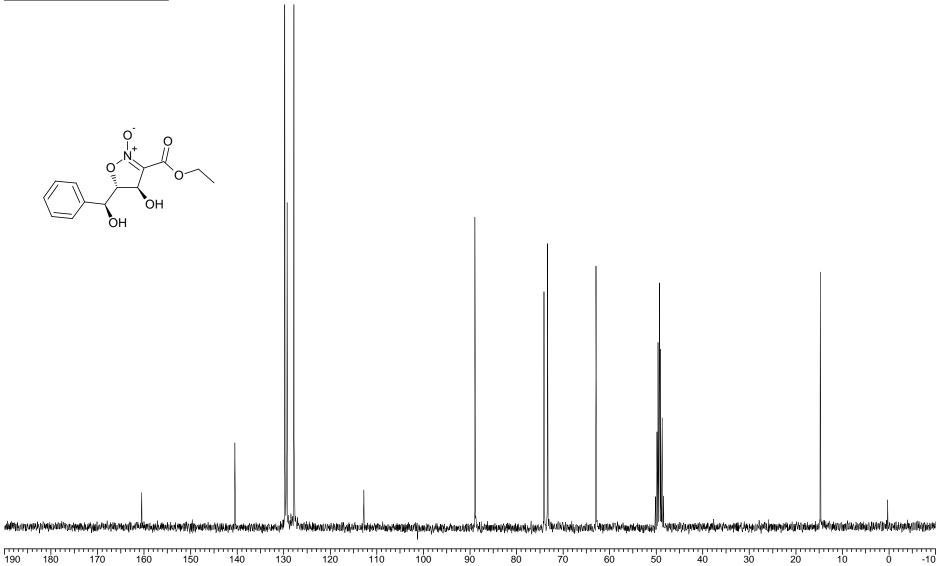
Acquisition Ti	ime (sec) 0.8192	Comment			Date	1-03-00	Frequency (MHz)	75.46
Nucleus	13C	Original Points Count 12000	Points Count	16384	Solvent	acetone	Sweep Width (Hz)	20000.00


4,5-*cis-*1b

Acquisition Time (sec) 3.6405		Comment RC34	1 Date 2-12-0	0	Frequency (MHz) 300.08
Nucleus	1H Number of Transients 16	Original Points Count 1200	0	Points Count 16384	
Solvent	cd3od	Sweep Width (Hz) 4500	.45	Temperature (grad C) 20.000	

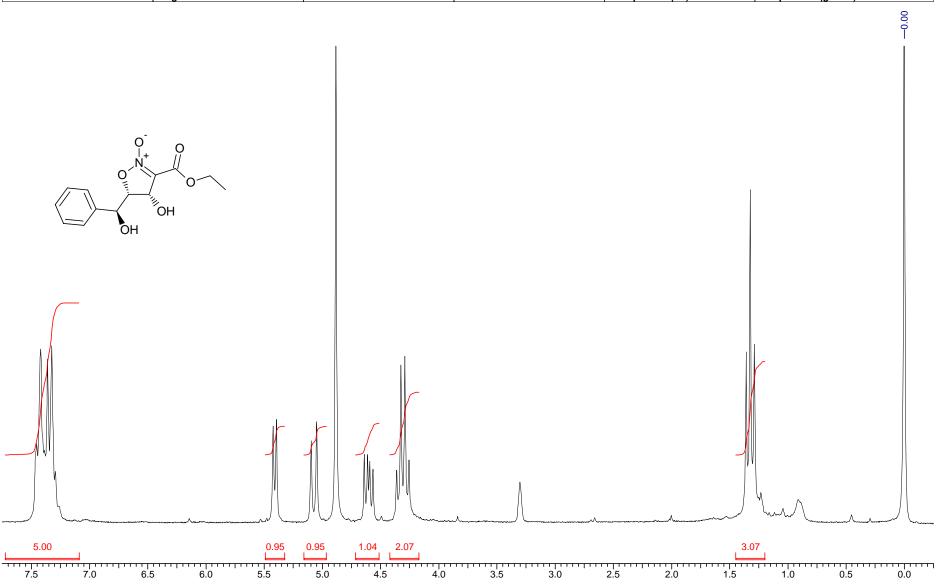
4,5-*cis-*1b

Acquisition Time (sec) 0.8192	Comment	Date 2-12-00	Frequency (MHz) 75.46
Nucleus 13C	Original Points Count 12000 Points Count 16384	Solvent cd3od	Sweep Width (Hz) 20000.00

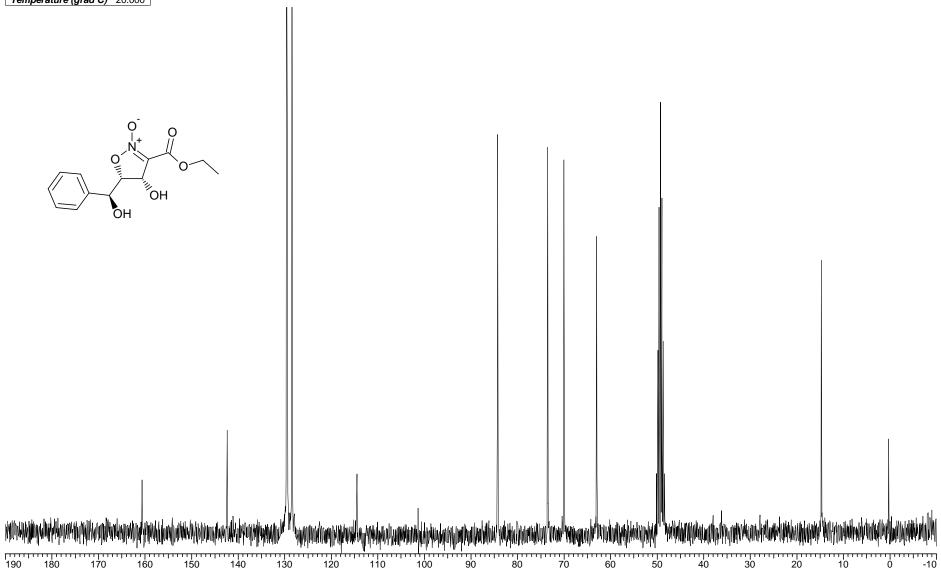

4,5-*trans-*1c

Acquisition Time (see	c) 3.6405	Comment		Date	2-12-00	Frequency (MHz)	300.08
Nucleus	1H	Number of Transients 16	Original Points Count 12000	Points Count	16384	Solvent	cd3od
Sweep Width (Hz)	4500.45	Temperature (grad C) 20.000					

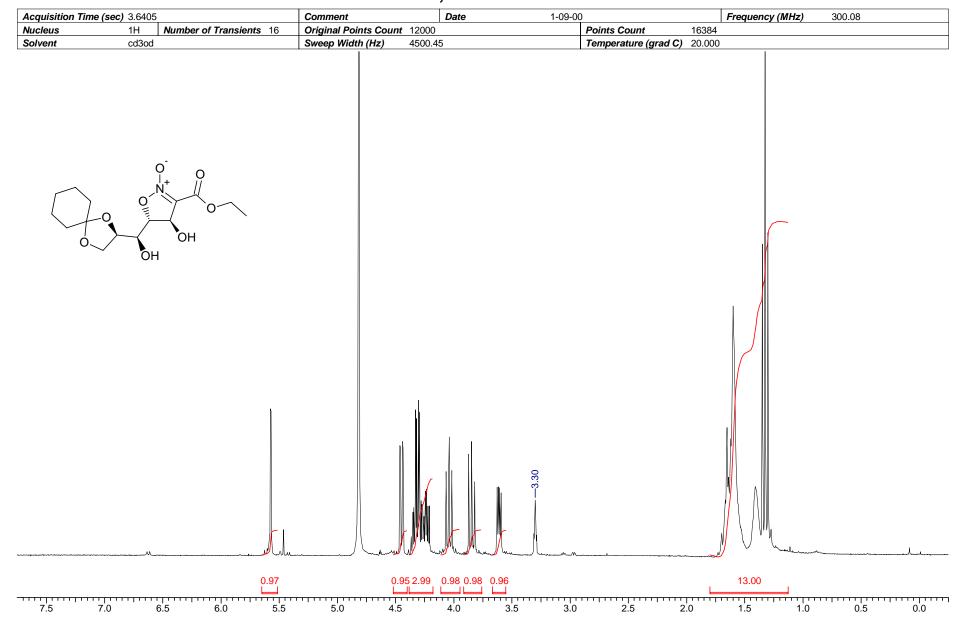
2.0 1.5 7.0 6.5 6.0


4,5-*trans-*1c

Acquisition Time (sec) 0.8192	Comment			Date	2-12-00	Frequency (MHz)	75.46
Nucleus 13C	Original Points Count 12000	Points Count	16384	Solvent	cd3od	Sweep Width (Hz)	20000.00

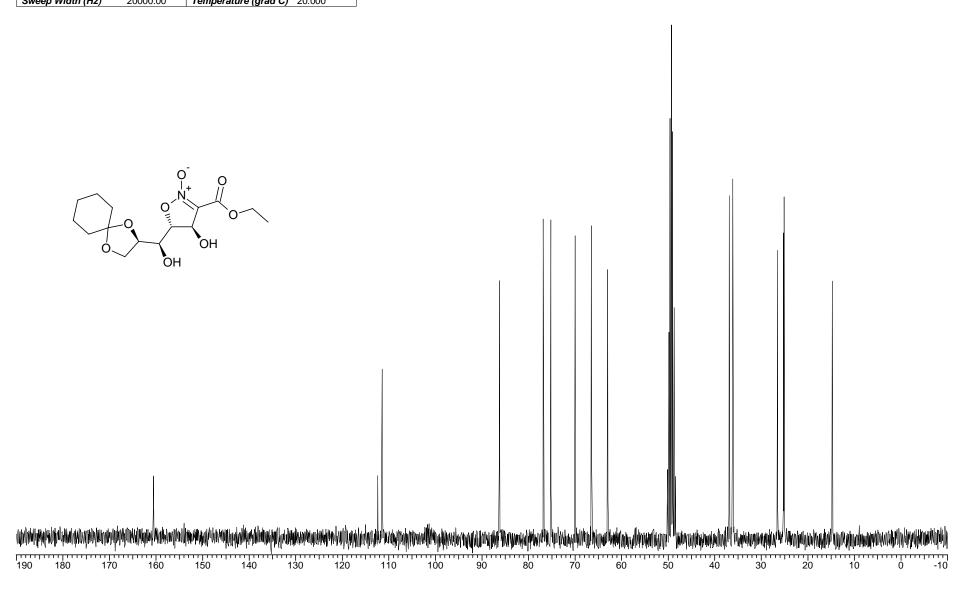

4,5-*cis-*1c

Acquisition Time (sec) 2.7304	Comment			Date	1-09-00	Frequency (MHz)	199.98	Nucleus 1H
Number of Transients 16	Original Points Count 8000	Points Count	8192	Solvent	cd3od	Sweep Width (Hz)	3000.30	Temperature (grad C) 20.000

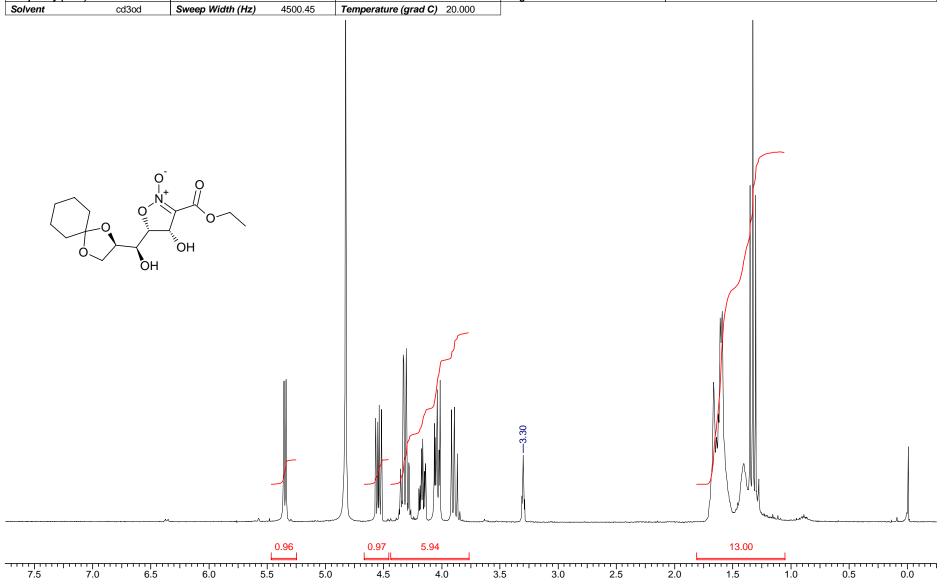


4,5-*cis-*1c

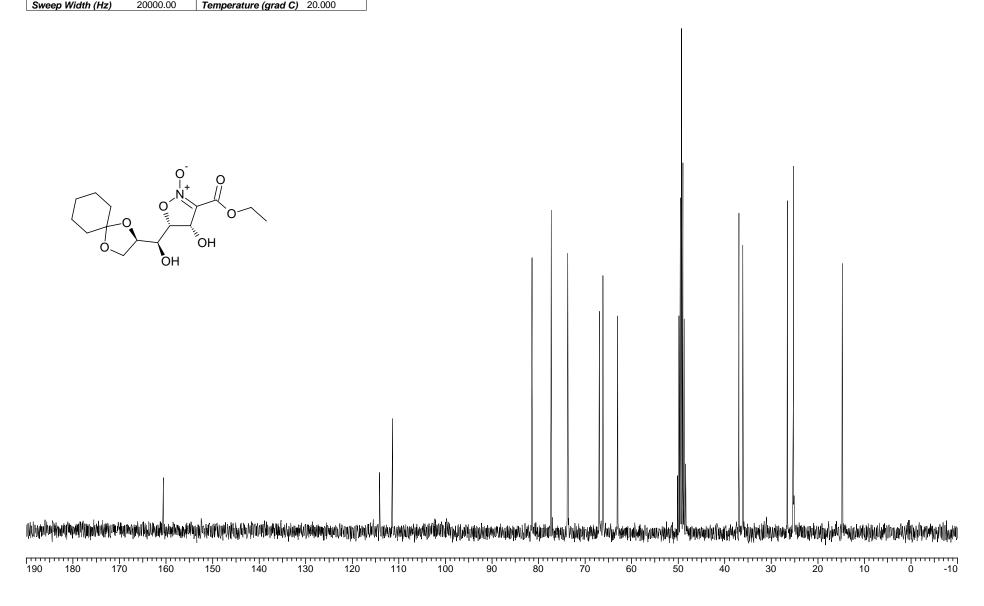
Acquisition Time (sec) 0.8192 Comment			Date	2-12-00		Frequency (MHz)	75.46		
Nucleus	13C	Original Points Count 12000	Points Count	16384	Solvent	cd3od	Sweep Width (Hz)	20000.00	



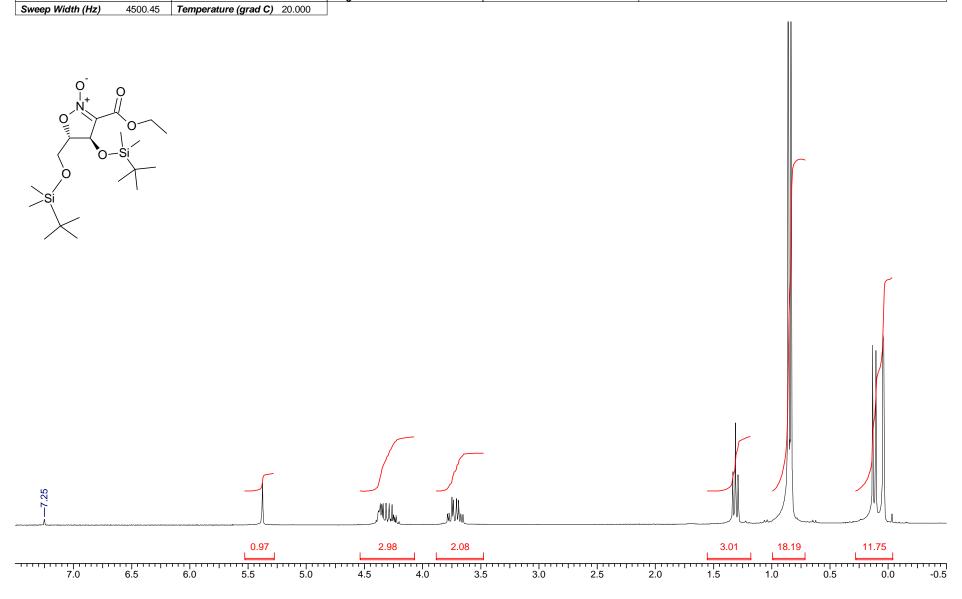
4,5-*trans-*1d


4,5-*trans-*1d

Acquisition Time (se	c) 0.8192	Comment					Date	1-09-00
Frequency (MHz)	75.46	Nucleus	13C	Original Points Count 12000	Points Count	16384	Solvent	cd3od
Curson Width (U=)	20000 00	Tamparatura (aread C)	20.000					


4,5-*cis-*1d

Acquisition Time (s	ec) 3.6405	Comment				Date	1-09-00	
Frequency (MHz)	300.08	Nucleus	1H	Number of Transients 16	Original Points Count 12000	Points Count	16384	


4,5-*cis-*1d

Acquisition Time (se	c) 0.8192	Comment					Date	1-09-00	
Frequency (MHz)	75.46	Nucleus	13C	Original Points Count 12000	Points Count	16384	Solvent	cd3od	
Courses Missish (III-)	20000 00	T			•				

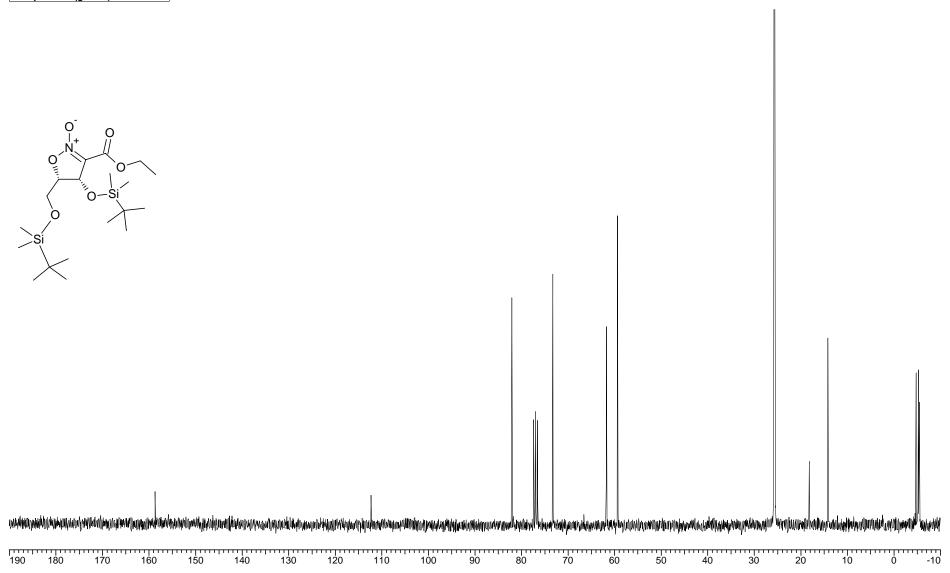
4,5-*trans-*4a

Acquisition Time (sec)	3.6405	Comment		Date	1-01-00	Frequency (MHz)	300.08
Nucleus	1H	Number of Transients 16	Original Points Count 12000	Points Count	16384	Solvent	cdcl3
		- : : : : : : : : : : : : : : : : : : :					

4,5-trans-4a

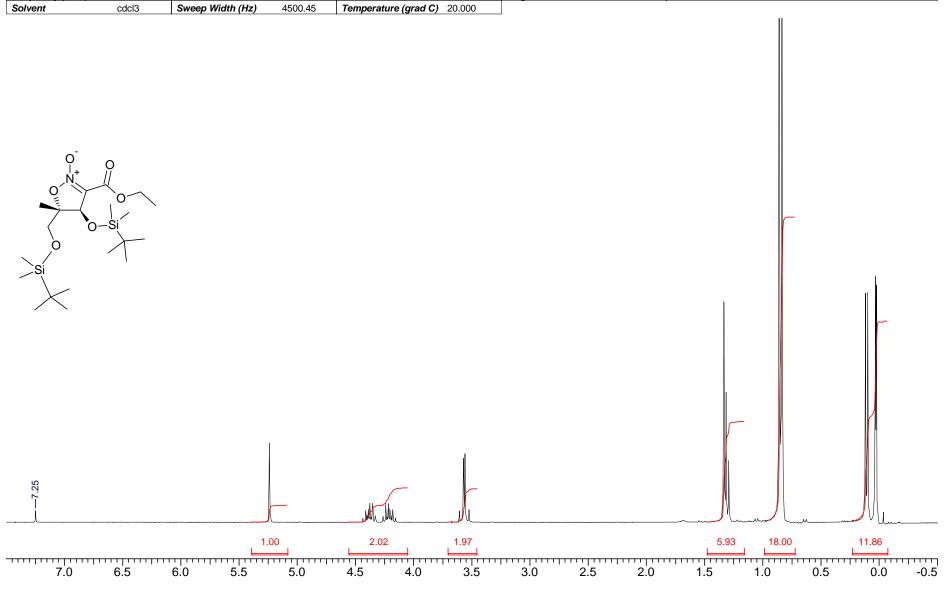
Acquis	sition Time (sec) 0.8192	Comment			Date	1-01-00	Frequency (MHz)	75.46
Nucleu	is 13C	Original Points Count 12000	Points Count	16384	Solvent	cdcl3	Sweep Width (Hz)	20000.00

Temperature (grad C) 20.000 TO AND THE PROPERTY OF THE PRO 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

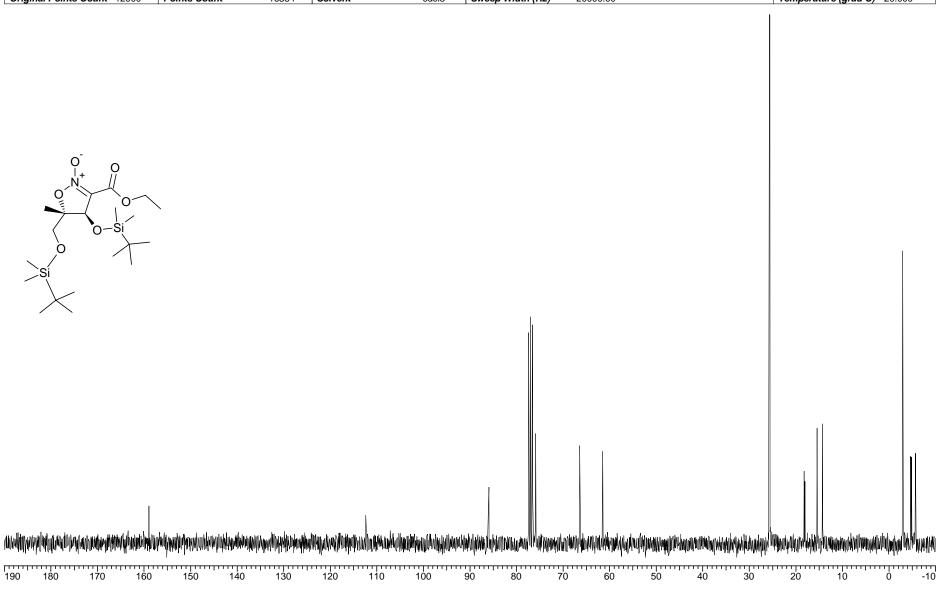

4,5-*cis-*4a

Acquisition Time (sec) 3.6405 Comment			Date	1-01-00	Frequency (MHz)	300.08
Nucleus 1H	Number of Transients 16	Original Points Count 12000	Points Count	16384	Solvent	cdcl3

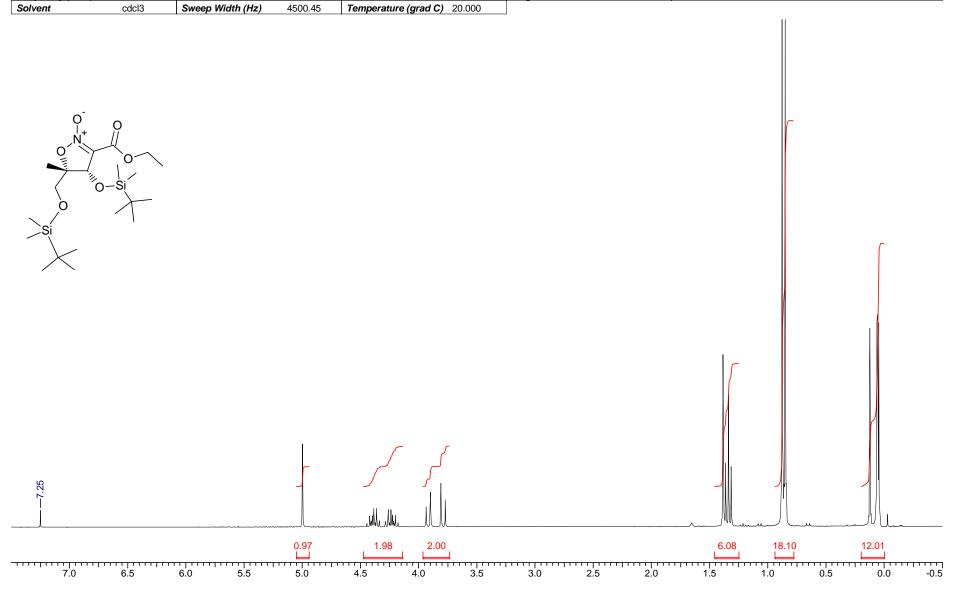
Sweep Width (Hz) 4500.45 **Temperature (grad C)** 20.000 11.82 0.97 2.05 18.50 7.0 6.5 3.5 3.0 2.5 2.0 1.0 0.0 6.0 5.5 5.0 1.5


4,5-cis-4a

Acquisition Time (sec) 0.8192	Comment	Date 1-01-00	Frequency (MHz) 75.46
Nucleus 13C	Original Points Count 12000 Points Count 16384	Solvent cdcl3	Sweep Width (Hz) 20000.00


4,5-*trans-*4b

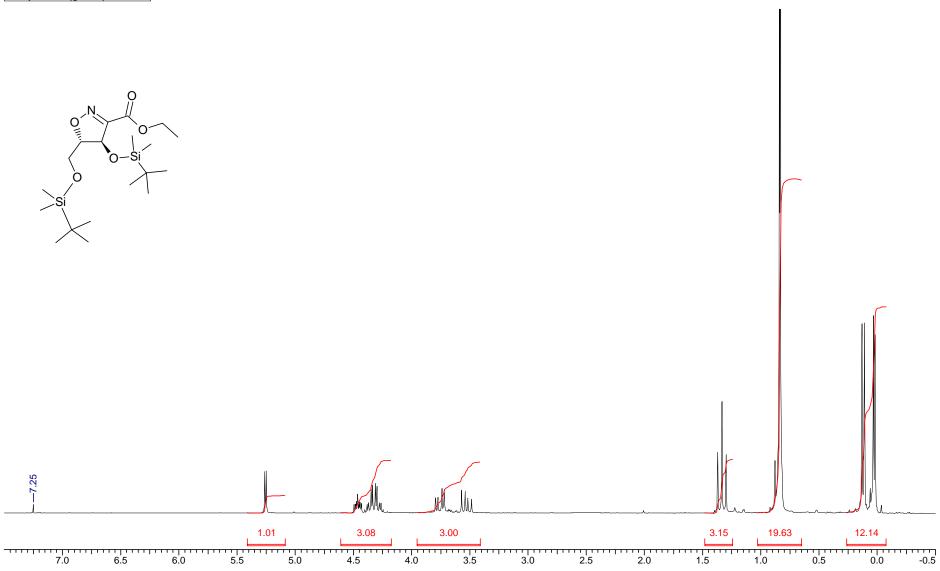
Acquisition Time (see	c) 3.6405	Comment			Date	1-04-00
Frequency (MHz)	300.08	Nucleus 1H	Number of Transients 16	Original Points Count 12000	Points Count	16384


4,5-*trans-*4b

Acquisition Time (sec) 0.8192	Comment				Date	1-29-00	Frequency (MHz)	75.46	Nucleus	13C
Original Points Count 12000	Points Count	16384	Solvent	cdcl3	Sweep Width (Hz)	20000.00			Temperature (grad	C) 20.000

4,5-*cis-*4b

Acquisition Time (se	ec) 3.6405	Comment			Date	1-04-00
Frequency (MHz)	300.08	Nucleus 1H	Number of Transients 16	Original Points Count 12000	Points Count	16384
			- : (()			



4,5-*cis-*4b

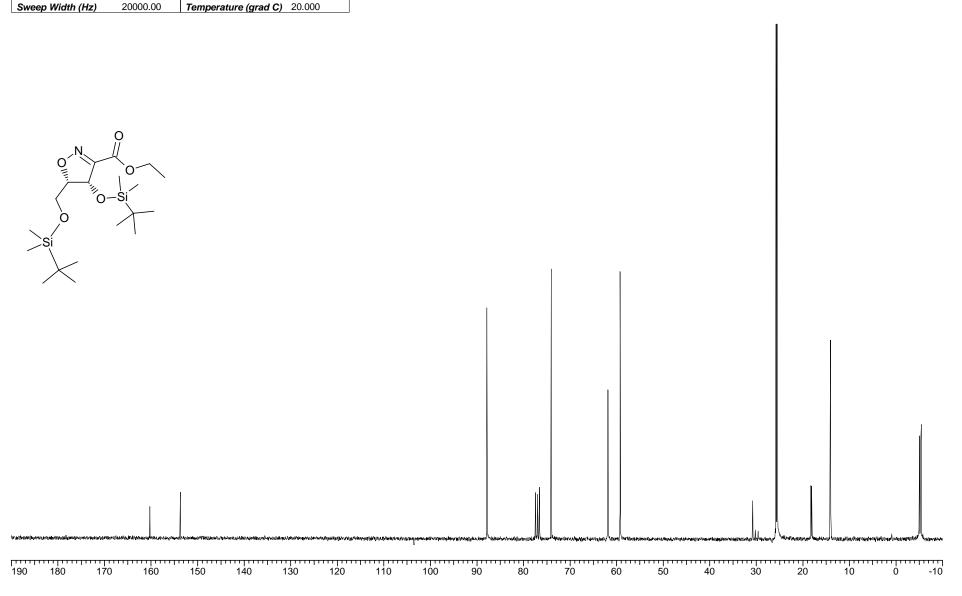
Original Points Count 12000 Points Count 16384 Solvent cdd3 Sweep Width (Hz) 20000.00 Temperature (grad C) 20.000	Acquisition Tim	ne (sec)	0.8192	Comment				Date	1-29-00	Frequency (MHz)	75.46	Nucleus	13C
	Original Points	Count	12000	Points Count	16384	Solvent	cdcl3	Sweep Width (Hz)	20000.00	, , ,		Temperature (grad C)	20.000
	0) ⁻ ,	0										
	l N	ı+ <i>أ</i>	'1										
	0′'\		\ 										
		_/	١	\									
		1110-	·Si										
30 150 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10	\	O											
35 36 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10	, 0												
90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 6 10	Si		1										
290 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
10													
**************************************								11	1				
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
100								1					
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
			1										
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10													
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 0 -10													
ากรากคุณสามาณสามาณสามาณสามาณสามาณสามาณสามาณสาม	MANAGEMENT OF THE PROPERTY OF	Mildwhin m	Albahila Malakida da katala	nd A. draiblidis. Ir dhear gearaidh fholalandaidh a	Allahari Kashiro Limbara di Kashiro da Allahari di Maria di Allahari di Maria di Allahari di Maria di Maria di	n dia la company de la comp	hat har grading light bearing between	POTET PARTICIPATION PROPERTY PARTICIPATION OF THE PROPERTY OF	ndajidah katilah katil	nna arasa Na Malaka aria (kal hadia kiri a Lada (kiri a Lada (kiri a kiri da a kara a Ciri	AAAAA Maakiid Aabiik aa atal	/ Wallikaanaka 🛭 danaka kunki kaasa (ii.da) wata aba f	Malanina Jawalin Malanina atah
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10				•	ada ada da			historikalian Instantaka dibinahiman sahi adalam	ista di mandi statit meta, meta		1 4 2 4 7 7 7 1 4		<u> </u>
	190 180	170	160	150	140 130	120 110	100	90 80	70 60	50 40	30	20 10	0 -10

4,5-*trans-*5a

Acquisition Time (sec)	Acquisition Time (sec) 2.7304 Comment							Frequency (MHz)	199.98
Nucleus	1H	Number of Transients 16	Original Points Count 8000	Points Count	8192	Solvent	cdcl3	Sweep Width (Hz)	3000.30

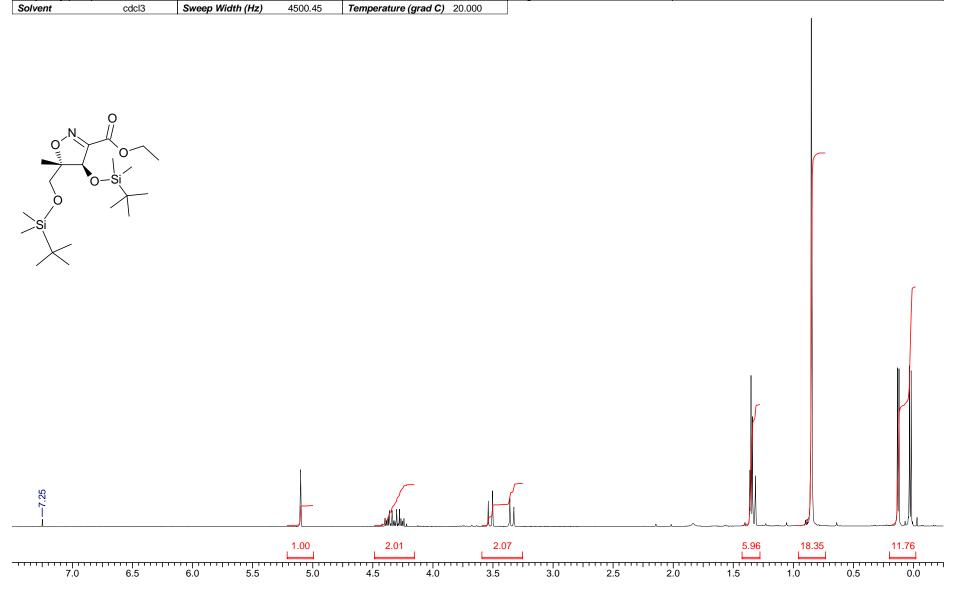
4,5-*trans-*5a

Acquisition Time (sec) 0.5464	Comment				Date	1-26-00	Frequency (MHz)	50.29	Nucleus	13C
Original Points Count 8000	Points Count	8192	Solvent	cdcl3	Sweep Width (Hz)	14992.51			Temperature (grad C)	20.000
ovaver-roment-bloom-level-roment-banker-bet-personal-person-person-	upproblem of legicles and legic	rillerentyasio, Yokephyasianth	\$1.7~4.014.944.484.484.484.484.484.484.484.484.48	N. Napaday, brida ki zysunovanje ki kir	stad anagraphonacaipeanum	y to replace the state of	#YNINONE-W#WYW-WWW-WWINY-WIFE-VINNON-WIFE-VINNON-WIFE-VINNON-WIFE-VINNON-WIFE-VINNON-WIFE-VINNON-WIFE-VINNON-W	radjundhu-kajvoja kojv	AND SOUNDERSON SOUND SOU	hadi kafak ja nagipi ja kafa k
190 180 170 160				,						

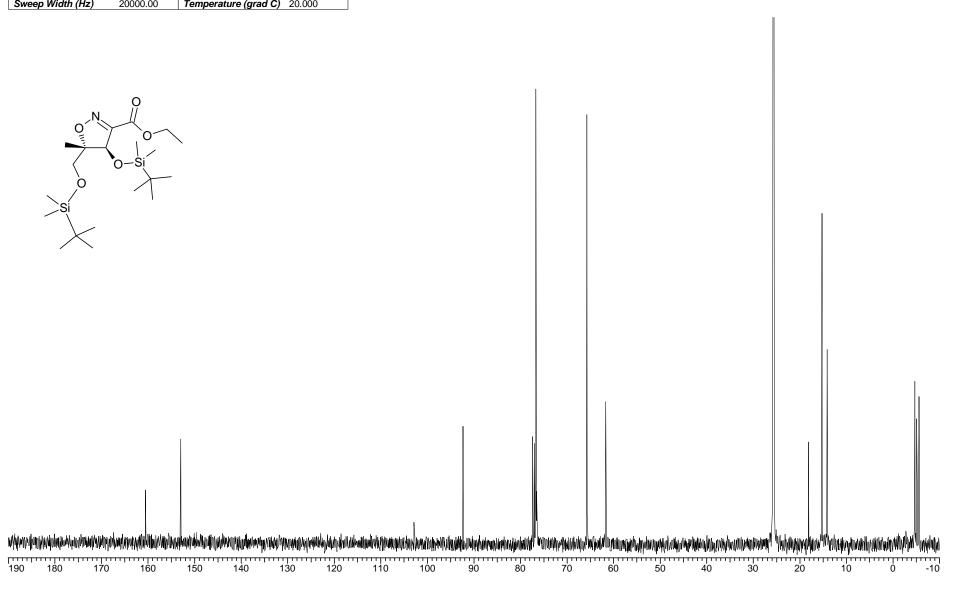

4,5-*cis-*5a

Acquisition Time (sec) 3.6	6405	Comment	Date	1-04-00	Frequency (MHz)	300.08	
Nucleus 1H	1	Number of Transients 16	Original Points Count 12000	Points Count	16384	Solvent	cdcl3

Sweep Width (Hz) 4500.45 **Temperature (grad C)** 20.000 0.98 3.00 18.00 11.77 1.0 7.0 1.5 0.0 6.5 5.0 3.5 3.0 2.5 2.0 6.0 5.5


4,5-*cis-*5a

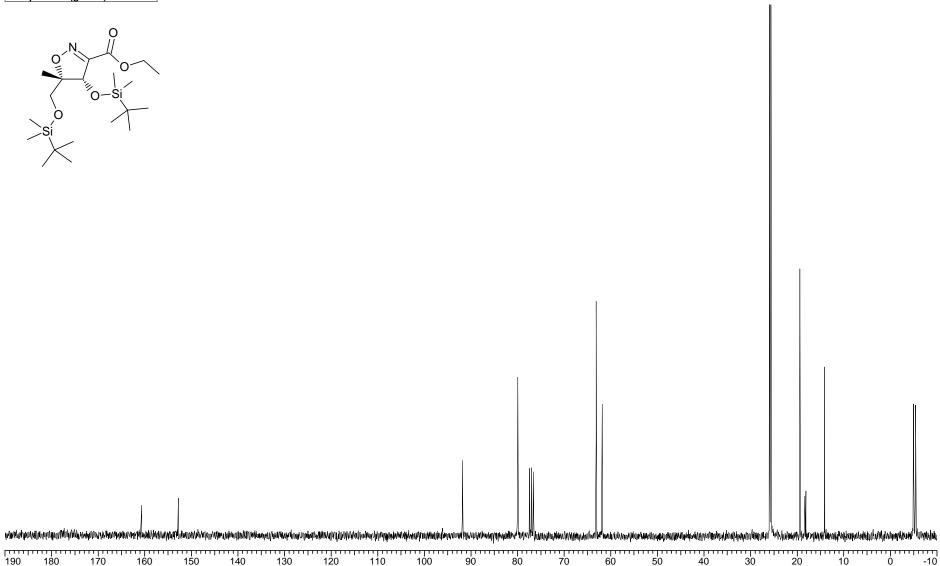
Acquisition Time (se	c) 0.8192	Comment					Date	1-04-00	
Frequency (MHz)	75.46	Nucleus	13C	Original Points Count 12000	Points Count	16384	Solvent	cdcl3	
0 140 141 (11.)	00000 00		4.61 00.000		•		<u> </u>		


4,5-*trans-*5b

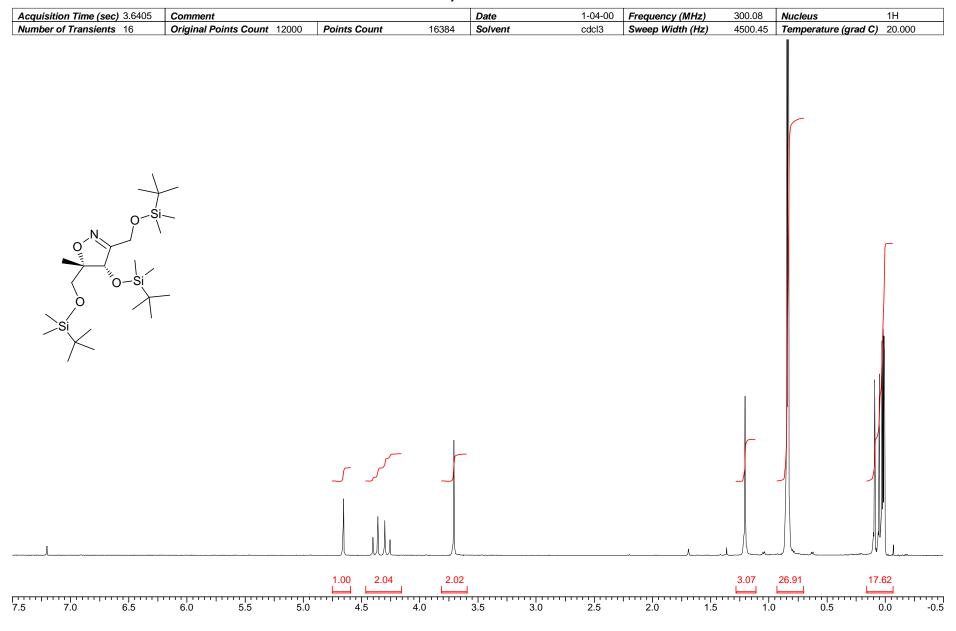
Acquisition Time (se	c) 3.6405	Comment			Date	1-04-00	
Frequency (MHz)	300.08	Nucleus	1H	Number of Transients 16	Original Points Count 12000	Points Count	16384

4,5-*trans-*5b

Acquisition Time (se	c) 0.8192	Comment					Date	1-04-00
Frequency (MHz)	75.46	Nucleus	13C	Original Points Count 12000	Points Count	16384	Solvent	cdcl3
Curan Midth (U=)	20000 00	Tommoveture (eved C)	20.000		•			

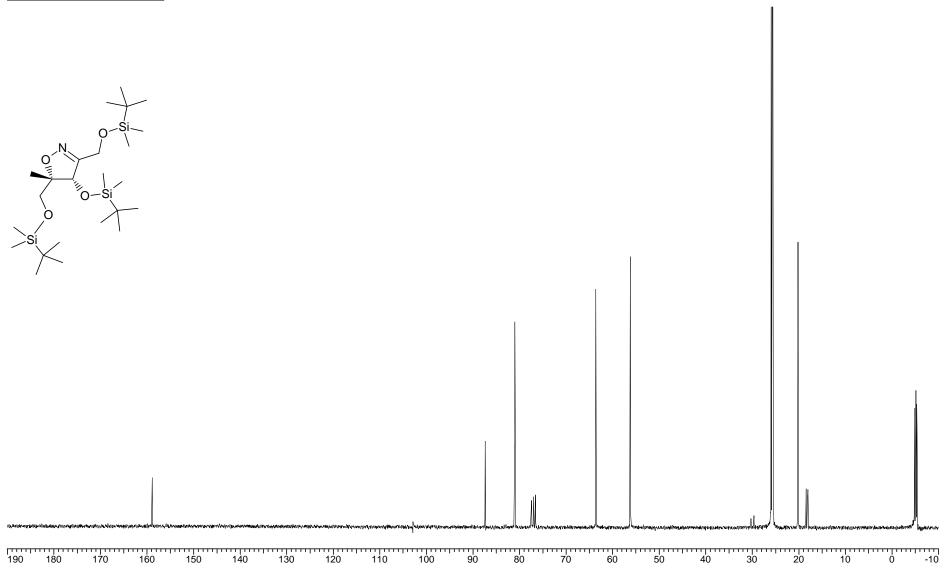


4,5-*cis*-5b

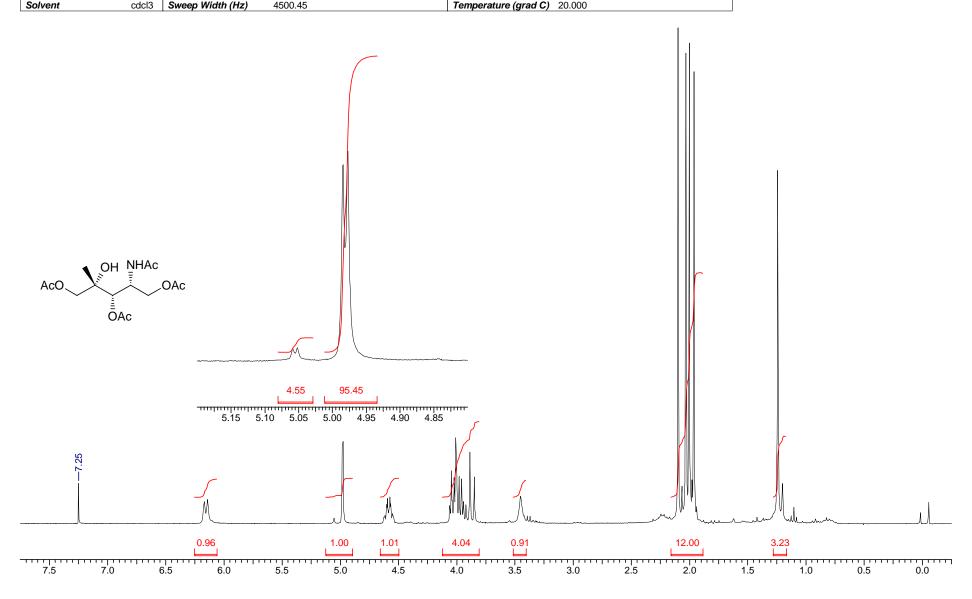

			4,5-	C/3-JD					
Acquisition Time (sec) 3.6405	Comment			Date	1-23-00	Frequency (MHz)	300.08	Nucleus	1H
Number of Transients 5	Original Points Count 12000	Points Count	16384	Solvent	cdcl3	Sweep Width (Hz)	4500.45	Temperature (grad C)	29.000
			J.J.	.					

4,5-*cis-*5b

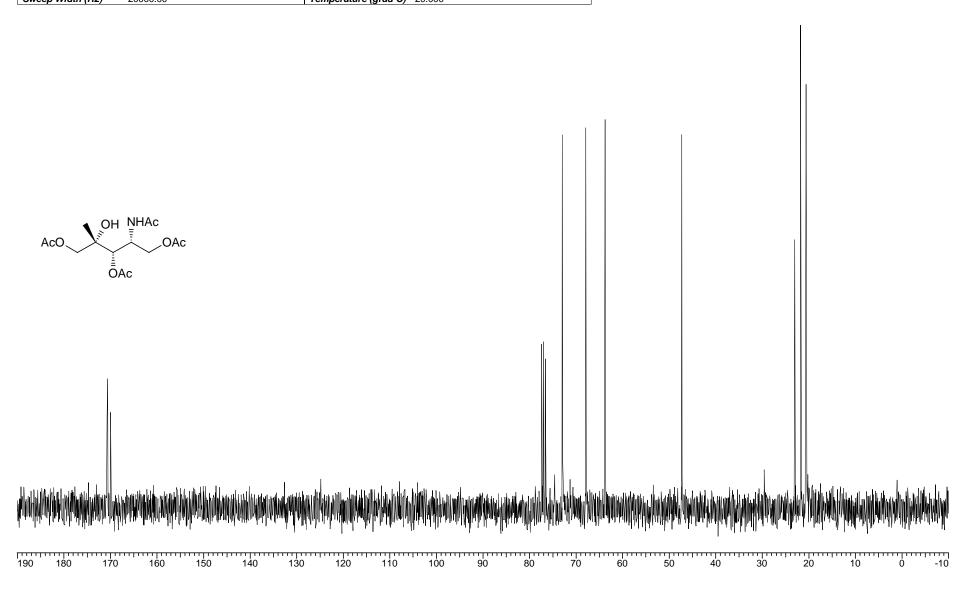
Acquisition Time (sec) 0.8192	Comment			Date	1-23-00	Frequency (MHz)	75.46	Nucleus	13C
Number of Transients 1000	Original Points Count 12000 Points Count 16384			Solvent	cdcl3	Sweep Width (Hz)	20000.00		



4,5-cis-6


4,5-*cis-*6

Acquisition Time (sec) 0.8192	Comment	Date 1-04-00	Frequency (MHz) 75.46
Nucleus 13C	Original Points Count 12000 Points Count 16384	Solvent cdcl3	Sweep Width (Hz) 20000.00


Tetraacetate 8

Acquisition Time (see	3.6405	Comment		Date 2-22	-00
Frequency (MHz)	300.08	Nucleus 1H	Number of Transients 16	Original Points Count 120	0 Points Count 16384
Solvent	odol? Swoon Width (Uz) 4500 4	<u> </u>	Tomporature (grad C) 20 000		

Tetraacetate 8

Acquisition Time (see	Acquisition Time (sec) 0.8192			Comment			Date	2-22-00	2-22-00		
Frequency (MHz)	75.46	Nucleus	13C	Number of Transients	128	Original Points Count 12000	Points Count	16384	Solvent	cdcl3	
Sween Width (Hz)	20000 0	00		Temperature (grad C)	20 000						

